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Transverse shear-induced gradient diffusion in a
dilute suspension of spheres
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We study the shear-induced gradient diffusion of particles in an inhomogeneous
dilute suspension of neutrally buoyant spherical particles undergoing a simple shearing
motion, with all inertia and Brownian motion effects assumed negligible. An expansion
is derived for the flux of particles due to a concentration gradient along the directions
perpendicular to the ambient flow. This expression involves the average velocity
of the particles, which in turn is expressed as an integral over contributions from
all possible configurations. The integral is divergent when expressed in terms of
three-particle interactions and must be renormalized. For the monolayer case, such
a renormalization is achieved by imposing the condition of zero total macroscopic
flux in the transverse direction whereas, for the three-dimensional case, the additional
constraint of zero total macroscopic pressure gradient is required. Following the
scheme of Wang, Mauri & Acrivos (1996), the renormalized integral is evaluated
numerically for the case of a monolayer of particles, giving for the gradient diffusion
coefficient 0.077γa2c̄2, where γ is the applied shear rate, a the radius of the spheres
and c̄ their areal fraction.

1. Introduction
The shear-induced diffusion of non-Brownian particles has recently been found to

play an important role in many physical processes involving suspensions of particles
dispersed in a viscous fluid (Acrivos 1995). In contrast to the Brownian diffusion of
particles in a colloidal suspension, which is due to the thermal fluctuations of the
interactions between the fluid and the particles, the shear-induced diffusion is due
solely to the hydrodynamic interactions among the particles. Although, in principle,
the process is deterministic, it can often be described as a diffusion process because of
the random nature of the complicated hydrodynamic interactions. This shear-induced
diffusion leads to a net migration of particles from regions of high concentration to
regions of low and from regions of high shear rate to low. This has been shown to
affect certain macroscopic properties of suspensions in a major way (Acrivos 1995).

In an earlier publication (Wang, Mauri & Acrivos 1996, hereafter referred to
as I) we studied the shear-induced self-diffusion of both a liquid tracer and a
tagged particle along the directions perpendicular to the ambient flow in a dilute
suspension of neutrally buoyant smooth spheres of uniform concentration undergoing
a simple shearing motion in the absence of inertia and Brownian motion effects and
derived expressions for the corresponding tracer diffusivities to leading order in the
particle concentration. Here, we shall examine the corresponding problems of gradient
diffusion in a dilute suspension of smooth spheres and determine the corresponding
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gradient diffusion coefficients, which are key parameters in any constitutive equation
that relates the particle flux to non-uniformities in the particle concentration profile.
The analogous case involving suspensions of rough spheres was studied by da Cunha
& Hinch (1996).

In the next section, the problem is formulated from both the Eulerian and the
Lagrangian points of view. But, since integrals in the corresponding expressions turn
out to be divergent, they are renormalized for a monolayer of spheres using the
constraint of zero macroscopic flux as shown in § 3 and the renormalized integrals
are then evaluated numerically based on the trajectory computation scheme described
in I. In the final section, the divergent integral expressions for the case of a three-
dimensional distribution of spheres are renormalized using the constraint of zero
macroscopic pressure gradient together with the constraint of zero macroscopic
volumetric flux.

2. Statement of the problem
Consider a dilute suspension of rigid smooth spheres undergoing a simple shear

flow U = γx2i1 with negligible inertia and Brownian motion effects. Here, γ is the
shear rate, x2 is the component of the position vector along the direction of the
gradient of the ambient flow, and i1 is the unit vector in the direction of the ambient
flow. If the suspension is inhomogeneous, the average velocity of a test sphere relative
to the bulk flow is, in general, not zero. To determine this velocity to leading order in
the particle concentration, we only need to consider three-particle interactions. Recall
that the interaction of two smooth spheres does not contribute to the drift velocity in
the transverse directions owing to the symmetry of the geometry and the reversibility
of the governing Stokes equations.

One way of defining the Eulerian average instantaneous velocity, VE
p,j , of a test

sphere A along the direction ij (i2 and i3 are unit vectors in the direction of the
gradient of the ambient flow and in the direction opposite to the vorticity of the
ambient flow, respectively) is by taking the ensemble average of its velocity Vj(0|y, z)
in the presence of two other spheres B and C, at a certain instant of time t = ti,

VE
p,j ≡

∫
Vj(0|y, z)P (y, z|0)d3yd3z, y ≡ Y − X , z ≡ Z − X , j = 2, 3, (1)

where X , Y and Z refer to the absolute positions of A, B and C, respectively. Thus,
y and z are the positions of sphere B and C relative to A, while P (y, z|0) denotes
the probability density of finding a second sphere B at y and a third sphere C at
z under the condition that there exists a test sphere at the origin. Since, from the
solution of the creeping flow equations, Vj(0|y, z), the velocity of A is completely
determined given y and z, it is clear that the evaluation of VE

p,j requires knowledge of
the probability density function P (y, z|0).

Now, it is obvious from the conservation of probability that

P (y, z|X )d3yd3z|t1 = P (y, z|X )d3yd3z|t2 (2)

along any given three-particle trajectory for any two instants of time t1 and t2. The
probability P (y, z|X ) can then be determined by tracing the volume element d3yd3z
along a trajectory back to t = −∞, where the probability density function for finding
any one of the spheres is set equal to n(x), the local average density of the particles.
We further take n to be a linear function of position in the same direction ij as that
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of the average velocity under study, hence

P−∞j (x) = n0 +
dn

dxj
xj + . . . , j = 2, 3, (3)

where n0 and dn/dxj are treated as given constant parameters and the repeated index
does not indicate summation. Thus, the probability density of the configuration B at
Y −∞ and C at Z−∞ is given by the product of the probability density of finding each
particle, or

P−∞j (y−∞, z−∞|X−∞) = n2
0

[
1 +

dn

n0dxj
(y−∞j + z−∞j + 2X−∞j ) + . . .

]
, (4)

with

X−∞j =

∫ −∞
ti

Vj(X |y, z)dt (5)

being the displacement of the test sphere when the element moves along a trajectory
from t = ti to its position at t = −∞.

The analysis outlined above presupposes that, within the suspension, we can distin-
guish three widely separated length scales, specifically: (i) the micro-length scale equal
to the particle radius a; (ii) the macro-length scale L, which refers to the linear dimen-
sions of a macroscopic region, containing a large number of randomly distributed
particles, wherein n and therefore the particle concentration c, vary according to (3)
with dn/dxj being O(n0/L); and (iii) the linear dimension l, such that a� l�L, of an
intermediate region surrounding the test particle but embedded in the macro-domain
within which B and C must lie if they are to interact with A. We further suppose that
B and C, which are otherwise indistinguishable from the remaining particles, enter
this interaction region at random locations on its boundary on the upstream side of
A, and that the probability of finding B and/or C at a given point is also given by
(3). Furthermore, this implies that, at the end of their interaction with A, particles B
and C re-enter the macroscopic region downstream of A where their positions again
become indeterminate on account of their interaction with a large number of particles
that are randomly distributed.

3. The monolayer case
First, we consider the monolayer case where the motion of all the particles is

confined to a plane perpendicular to i3, and compute the average velocity of A in
the direction i2. Therefore, similar to the three-dimensional case, the Eulerian average
velocity of a test particle can be written as

V̄
E

p =

∫ ∫
V2(0|y, z)P (y, z|0)dy1dy2dz1dz2, (6)

where the overbar denotes that the quantity corresponds to the monolayer case.
For computational convenience, the above four-fold integral is converted to a

three-fold integral by integrating along the trajectories of the spheres. It is clear from
(2) that, although the element dy1dy2dz1dz2 changes along a trajectory, the quantity
P (y, z|X )dy1dy2dz1dz2 or, because dy1 = vB1 dti, where vB1 is the component of the
velocity of particle B in the direction of the ambient flow, the rate P (y, z|X )vB1 dy2dz1dz2

remains the same and changes only from one trajectory to another. Therefore, since
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P (y, z|X ) is presumed known at t = −∞, we can convert (6) into

V̄
E

p =

∫
vB1 (−∞)dy−∞2 dz−∞1 dz−∞2

∫
V2P

−∞(y−∞, z−∞|X−∞)dti,

where the superscript −∞ denotes the value of the corresponding quantity at t = −∞.
To avoid counting two identical configurations twice, we denote as B the sphere which
first arrives at a reference plane xr1 =constant, and the other as C. After substituting
(4) into the above expression and noting that the term containing only the uniform
distribution drops out because it does not lead to any net particle migration, (6) can
be written as

V̄
E

p = n̄0

dn̄

dx2

∫
vB1 (−∞)dy−∞2 dz−∞1 dz−∞2

∫ +∞

−∞
[(y−∞2 + z−∞2 )V2 + 2X−∞2 V2]dti.

Substituting V2 = −dX−∞2 /dti from (5), the second term in the square bracket
becomes, on integration with respect to dti,∫ +∞

−∞
2X−∞2 V2dti = −

∫ +∞

−∞
2X−∞2

dX−∞2

dti
dti = −(∆X2)

2,

where ∆X2, the total displacement of the test sphere due to an encounter with spheres
B and C, is given by

∆X2 = X−∞2 (ti →∞) =

∫ +∞

−∞
V2(X |y, z)dt. (7)

Thus, the contribution of the second term is related to the self-diffusion coefficient
D̄S
p and hence the average velocity can be expressed as

V̄
E

p = − 2

n̄0

D̄S
p

dn̄

dx2

+ n̄0

dn̄

dx2

∫
∆X2(y

−∞
2 + z−∞2 )vB1 (−∞)dy−∞2 dz−∞1 dz−∞2 , (8)

where the particle self-diffusivity D̄S
p is given by (cf. I),

D̄S
p = 1

2
n̄2

0

∫
(∆X2)

2vB1 (−∞)dy−∞2 dz−∞1 dz−∞2 , (9)

which is of order c̄2, with c̄ being the areal fraction occupied by the particle phase. It
is easy to show that the above is consistent with the expression given by da Cunha &
Hinch (1996) for the flux of particles in a slightly non-uniform dilute suspension of
rough spheres, which they obtained by considering only two-particle interactions.

The integral in (8) is not absolutely convergent, as can be seen by noting that
∆X2 ∼ O(1/r̄5) for large |y| and |z| with r̄ being a typical distance between any two
of the spheres which participate in the encounter (cf. § 5 of I). As shown by Batchelor
(1972) for the analogous situation of a sedimenting suspension, such a divergence

arises from the fact that the integral (8) for V̄
E

2 is expressed in terms of the positions
of only two particles rather than, as should be the case for any mean quantity, over the
configuration space of the whole suspension. Fortunately, again following Batchelor
(1972), we can renormalize such a divergent integral by applying a global constraint
inherent in the formulation of the problem, in this case the constraint of zero total
areal flux in the i2 direction for the suspension as a whole, i.e.

J̄p + J̄f = 0, (10)

where J̄p and J̄f are the areal fluxes for the particle phase and the fluid phase,
respectively.
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To obtain an expression for J̄p we recall that the particle flux consists of two parts:
a convective contribution c̄V̄ E

p where V̄ E
p is the particle drift velocity encountered

earlier, and a purely diffusive flux equal to −D̄S
pdc̄/dx2 where D̄S

p is the particle tracer
diffusivity in a homogeneous suspension. To see why this diffusive term must appear
in the expression for J̄p, consider the case of a suspension of uniform concentration
in which, however, some of the particles are colored. Under these conditions, the
drift velocity is, of course, zero. But, if the concentration c of these coloured particles
is not uniform, their flux does not vanish and is given by the diffusive expression
−D̄S

pdc̄/dx2 noted above. Consequently,

J̄p = c̄V̄ E
p − D̄S

p

dc̄

dx2

and, similarly,

J̄f = (1− c̄)V̄ E
f − D̄S

f

d(1− c̄)
dx2

,

where V̄ E
f and D̄S

f are, respectively, the average Eulerian liquid velocity and liquid

self-diffusivity with D̄S
f given by

D̄S
f = 1

2
n̄2

0

∫
(∆X∗2 )2vB1 (−∞)dy−∞2 dz−∞1 dz−∞2 , (11)

where ∆X∗2 denotes the displacement of a fluid point due to its encounter with two
spheres B and C.

From this constraint, we find that V̄ E
f ∼ O(c̄2dc̄/dx2), which is of smaller order

than the velocity V̄ E
p given by (8). On the other hand, by means of a procedure similar

to that used in arriving at (8) for V̄ E
p , we can obtain that

V̄ E
f = − 2

n̄0

D̄S
f

dn̄

dx2

+ n̄0

dn̄

dx2

∫
∆X∗2 (y−∞2 + z−∞2 )vB1 (−∞)dy−∞2 dz−∞1 dz−∞2 , (12)

which is of order c̄dc̄/dx2. But, since V̄ E
f must vanish to O(c̄dc̄/dx2), we have, by

subtracting the above from the right-hand side of (8), that

V̄ E
p = − 2

n̄0

(D̄S
p − D̄S

f )
dn̄

dx2

+n̄0

dn̄

dx2

∫
(∆X2 − ∆X∗2 )(y−∞2 + z−∞2 )vB1 (−∞)dy−∞2 dz−∞1 dz−∞2 + O

(
c̄2 dc̄

dx2

)
. (13)

Since it can easily be shown that the difference ∆X2−∆X∗2 is of order smaller than
1/r̄5, with r̄ denoting the typical distance between any two spheres (cf. § 5 of I), the
integral in the above expression is convergent and can be evaluated numerically.

The expression for V̄ E
p given by (13) can also be obtained more directly starting

from the particle flux expression as given by the Fokker–Planck equation

J̄p = c̄V̄ L
p −

d

dx2

D̄S
p c̄ = c̄V̄ L

p − c̄
dD̄S

p

dc̄

dc̄

dx2

− D̄S
p

dc̄

dx2

,

with all terms of order c̄2dc̄/dx2, where V̄ L
p is the Lagrangian particle velocity given

by

V̄
L

p =
c̄

π2

dc̄

dx2

∫
∆X2(y

−∞
2 + z−∞2 )vB1 dy−∞2 dz−∞1 dz−∞2 .



284 Y. Wang, R. Mauri and A. Acrivos

On the other hand, the Lagrangian expression for the fluid flux is

J̄f = (1− c̄)V̄ L
f − (1− c̄)

dD̄S
f

dc̄

dc̄

dx2

− D̄S
f

d(1− c̄)
dx2

.

But since the second term is of O(c̄dc̄/dx2), the requirement that J̄p + J̄f = 0 gives
that, to order c̄dc̄/dx2,

V̄ L
f =

c̄

π2

dc̄

dx2

∫
∆X∗2 (y−∞2 + z−∞2 )vB1 dy−∞2 dz−∞1 dz−∞2 =

dD̄S
f

dc̄

dc̄

dx2

.

Therefore, by subtracting the above expression for V̄ L
f from that for V̄ L

p , we have that

V̄ E
p = V̄ L

p −
dD̄S

p

dc̄

dc̄

dx2

= −
[

d

dc̄
(D̄S

p − D̄S
f )

]
dc̄

dx2

+
c̄

π2

dc̄

dx2

∫
(∆X2 − ∆X∗2 )vB1 (y−∞2 + z−∞2 )dy−∞2 dz−∞1 dz−∞2 ,

which is the same as (13) obtained via the Eulerian description.

4. Numerical results for a monolayer
We used the same numerical scheme as in I to compute the average velocity of

a sphere in a monolayer by evaluating the integral in (13). However, in view of the
fact that the difference ∆X2−∆X∗2 in the integrand is numerically much smaller than
either of these two terms, special care had to be taken in evaluating the integral
because even a small residue error in either ∆X2 or ∆X∗2 will lead to a significant
numerical uncertainty. After evaluating the integral and using the expressions given
by (9) and (11), for D̄S

p and D̄S
f , respectively, we find

V̄ E
p = −0.045γa2c̄

dc̄

dy
,

V̄ L
f =

dD̄f
dc̄

dc̄

dy
= 0.134γa2c̄

dc̄

dy
,

while

V̄ L
p = V̄ E

p +
dD̄p
dc̄

dc̄

dy
= +0.019γa2c̄

dc̄

dy
.

The reason why V̄ L
p , the Lagrangian average particle velocity, is positive, which

appears counter intuitive, is still not clear.
Finally, we obtain the particle gradient diffusion coefficient for a monolayer of

particles

D̄G
p = 0.077a2γc̄2,

which is defined by

J̄p = c̄V̄ E
p − D̄S

p

dc̄

dx2

≡ −D̄G
p

dc̄

dx2

. (14)

5. Renormalization for the three-dimensional distribution of particles
In § 3, we were able to renormalize the expression for the average velocity of

a test sphere in a monolayer of spheres using the constraint of zero bulk flux in
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the transverse direction. For the case of a three-dimensional distribution of spheres,
however, this constraint is not sufficient to yield a convergent expression for the
average velocity. Specifically, after applying this constraint to the three-dimensional
case, the Eulerian average velocity becomes

VE
p,j = − 2

n0

(DS
p,j − DS

f,j)
dn

dx2

+n0

dn

dxj

∫
(∆Xj − ∆X∗j )(y

−∞
j + z−∞j )vB1 (−∞)dy−∞2 dy−∞3 dz−∞1 dz−∞2 dz−∞3

+O

(
c2 dc

dx2

)
. (15)

But, since the difference ∆X2 − ∆X∗2 is of O(1/r̄7) for large r̄ the above expression
is still not convergent and an additional renormalization is required. To obtain this
additional constraint, we first note that the O(1/r̄7) term in ∆X2 − ∆X∗2 for large
r̄ arises from the difference of the velocity of a test sphere, V2(X |y, z), from that
of a fluid tracer, V ∗2 (X |y, z), due to their interactions with two other spheres B and
C. Specifically, following the reflection method, the velocity disturbance due to an
isolated sphere, say B, will be reflected by another sphere C, producing a velocity
disturbance u′, which is of O(1/r̄5). This disturbance influences the velocity of the test
particle, which can be either a test sphere or a fluid tracer. However, according to
Faxén’s law, the response velocity of a test sphere differs from that of a fluid tracer by
an amount equal to 1

6
∇2u′. It is the cumulative effect of this response velocity difference

on the reflected disturbance arising from all the sphere pairs in the suspension that
renders the integral in (15) divergent. But, this sum is related to the average pressure
gradient in the suspension in view of the fact that the difference 1

6
∇2u′ in the response

velocity is related to the corresponding pressure gradient disturbance by the usual
Stokes equation µ∇2u′ = ∇p′. On the other hand, since, from a macroscopic point of
view, the bulk pressure gradient in the transverse directions must be zero even in the
presence of a concentration gradient in this direction, it is clear that this constraint
of zero bulk pressure gradient in the transverse direction can be used to remove the
non-convergence in the average velocity expression by subtracting the corresponding
divergent parts and evaluating the remaining convergent integral (Batchelor 1972).

The constraint of zero bulk pressure gradient in the transverse directions can be
expressed as an ensemble average

〈∇p〉j = ij ·
∫
∇p(Y ,Z)P (Y ,Y )d3Yd3Z = 0, (16)

where ∇p is the pressure gradient at a test point X t located at the origin for the
configuration of two spheres B and C at Y and Z respectively, while P (Y ,Z) denotes
the probability density of this configuration. Note that the above integral is taken
over all possible configurations as long as the spheres B and C do not overlap,
including the configuration where the sample point lies within one of the spheres.
Since the midpoint of the centreline of B and C does not move in the ij direction, the
probability density function P (Y ,Z) is given by

P (Y ,Z) = P−∞j (Y−∞,Z−∞)q(|Y − Z |), (17)

with q(|Y − Z |) being the probability factor given by Batchelor & Green (1972).
Now, the domain of integration in (16) can be divided into two parts depending
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on whether the sample point lies outside or inside the spheres, i.e.

〈∇p〉j = ij ·
[∫

outside

+2

∫
inside one of the spheres

]
. (18)

The first integral

I1 = ij ·
∫

outside

∇p(Y ,Z)P (Y ,Z)d3Yd3Z , (19)

is related to the divergent part in the expression (15) as mentioned above. For the
second integral, it is convenient to use r ≡ X t − Y and z ≡ Z − Y to yield

I2 = 2ij ·
∫

1<r

∇p(r, z)P (r, z)d3rd3z (20)

with

P (r, z) = n2
0

[
1 +

1

2n0

dn

dxj
(zj − 2rj) + . . .

]
q(z). (21)

The integral I2, which is over the domain inside one of the spheres, say B, can
be determined by converting the volume integral into a surface integral by Gauss’s
theorem, as done for similar problems (Batchelor & Green 1972).

Substituting (21) into the expression for I2 yields

I2 = n0

dn

dxj
ij ·
∫
z>2

q(z)d3z

∫
r<1

(zj − 2rj)∇pd3r. (22)

Applying Gauss’s theorem to the integral with respect to d3r gives

I2 = n0

dn

dxj

∫
z>2

q(z)d3z

[
ij ·
∫
r=1

(zj − 2rj)pndS + 2

∫
r<1

pd3r

]
. (23)

Obviously, I2 is independent of the nature of the material inside the sphere B as
long as its surface is rigid. So we can use any constitutive relation to determine the
volume integral inside B. One convenient choice is to assume that the sphere is made
of an infinitely viscous fluid with no surface tension on the interface. For this choice,
the pressure field p is a harmonic function without any singularity inside the sphere.
Therefore, its average over the volume inside the sphere equals the average on the
surface of the sphere

1
4
3
π

∫
r61

pd3r =
1

4π

∫
r=1

pdS (24)

and thus

I2 = n0

dn

dxj
ij ·
∫
z>2

q(z)d3z

∫
r=1

( 2
3

+ zjrj − 2r2
j )pdS. (25)

Since, for large z, the leading term for p is due to the reflection by C of the disturbance
induced by the presence of B, which is of order 1/z6, the above integral is absolutely
convergent and can be evaluated numerically.

Using the same procedure, as in § 3 we can convert (19) into

I1 = n0

dn

dxj
I10 + n0

dn

dxj

∫
∆X ′j(y

−∞
j + z−∞j )vB1 (−∞)dy−∞2 dy−∞3 dz−∞1 dz−∞2 dz−∞3 , (26)

where

∆X ′j =

∫ +∞

−∞

1
6
∇2V ′j (X |y, z)dt, (27)
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and

I10 =

∫
α(y−∞j + z−∞j )vB1 (−∞)dy−∞2 dy−∞3 dz−∞1 dz−∞2 dz−∞3 , (28)

with

α =

∫ +∞

−∞

1
6
X−∞j ∇2V ′j (X |y, z)dt. (29)

Here, V ′j (X |y, z) is the velocity disturbance at a fluid point located at X with sphere
B at y and C at z. ∆X ′j and α can be computed just as ∆Xj by integrating along the
trajectory for any given initial configurations. The integral in the expression for I10

is obviously convergent in view of the fact that α ∼ O(1/r̄9), which can be seen by
noting that X−∞j is of O(1/r̄2) for large r̄.

The origin of the non-convergence of the integral in (26) is the same as that for
the integral in (15). Hence, we can remove the non-convergent part in (15) using the
constraint (16) together with (25), (26) and (28) to yield

VE
p,j = − 2

n0

(DS
p,j − DS

f,j)
dn

dxj
− n0

dn

dxj
I10 − I2/6

+n0

dn

dxj

∫
(∆Xj − ∆X∗j − 1

6
∆X ′j)(y

−∞
j + z−∞j )vB1 (−∞)dy−∞2 dy−∞3 dz−∞1 dz−∞2 dz−∞3 .

(30)

The term ∆Xj − ∆X∗j − 1
6
∆X ′j in the integrand decays faster than 1/r̄8, which can be

seen by considering the hydrodynamic interactions among three spheres in a simple
shear flow for large r̄ in terms of the reflection method. Thus, the integral is now
convergent.

In conclusion, we can renormalize the average velocity expression by using together
the constraints of zero bulk flux and zero bulk pressure gradient and obtain convergent
expressions for the Eulerian average particle velocity in the transverse directions which
can be evaluated numerically. This in turn can be used to determine the gradient
diffusivity through (14). This has not been attempted, however, because of the intense
computational effort that is required.
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